Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling.

نویسندگان

  • Yu-Tzu Tai
  • Klaus Podar
  • Laurence Catley
  • Yu-Hua Tseng
  • Masaharu Akiyama
  • Reshma Shringarpure
  • Renate Burger
  • Teru Hideshima
  • Dharminder Chauhan
  • Nicholas Mitsiades
  • Paul Richardson
  • Nikhil C Munshi
  • C Ronald Kahn
  • Constantine Mitsiades
  • Kenneth C Anderson
چکیده

Insulin-like growth factor-1 (IGF-I) is a growth and survival factor in human multiple myeloma (MM) cells. Here we examine the effect of IGF-I on MM cell adhesion and migration, and define the role of beta1 integrin in these processes. IGF-I increases adhesion of MM.1S and OPM6 MM cells to fibronectin (FN) in a time- and dose-dependent manner, as a consequence of IGF-IR activation. Conversely, blocking anti-beta1 integrin monoclonal antibody, RGD peptide, and cytochalasin D inhibit IGF-I-induced cell adhesion to FN. IGF-I rapidly and transiently induces association of IGF-IR and beta1 integrin, with phosphorylation of IGF-IR, IRS-1, and p85(PI3-K). IGF-I also triggers phosphorylation of AKT and ERK significantly. Both IGF-IR and beta1 integrin colocalize to lipid rafts on the plasma membrane after IGF-I stimulation. In addition, IGF-I triggers polymerization of F-actin, induces phosphorylation of p125(FAK) and paxillin, and enhances beta1 integrin interaction with these focal adhesion proteins. Importantly, using pharmacological inhibitors of phosphatidylinositol 3'-kinase (PI3-K) (LY294002 and wortmannin) and extracellular signal-regulated kinase (PD98059), we demonstrate that IGF-I-induced MM cell adhesion to FN is achieved only when PI3-K/AKT is activated. IGF-I induces a 1.7-2.2 (MM.1S) and 2-2.5-fold (OPM6) increase in migration, whereas blocking anti-IGF-I and anti-beta1 integrin monoclonal antibodies, PI3-K inhibitors, as well as cytochalasin D abrogate IGF-I-induced MM cell transmigration. Finally, IGF-I induces adhesion of CD138+ patient MM cells. Therefore, these studies suggest a role for IGF-I in trafficking and localization of MM cells in the bone marrow microenvironment. Moreover, they define the functional association of IGF-IR and beta1 integrin in mediating MM cell homing, providing the preclinical rationale for novel treatment strategies targeting IGF-I/IGF-IR in MM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human myeloma cells adhere to fibronectin in response to hepatocyte growth factor.

BACKGROUND AND OBJECTIVES Multiple myeloma is characterized by an accumulation of malignant plasma cells in the bone marrow. Inside the bone marrow, adhesion of myeloma cells to extracellular matrix proteins such as fibronectin may promote cell survival and induce drug resistance. In this work we examined the effect of hepatocyte growth factor (HGF) on the adhesion of myeloma cells and the sign...

متن کامل

Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells.

Multiple myeloma (MM) is an incurable form of cancer characterized by accumulation of malignant plasma cells in the bone marrow. During the course of this disease, tumor cells cross endothelial barriers and home to the bone marrow. In latter stages, myeloma cells extravasate through blood vessels and may seed a variety of organs. Insulin-like growth factor I (IGF-I) is one of several growth fac...

متن کامل

Hepatocyte growth factor promotes migration of human myeloma cells.

Multiple myeloma is characterized by the accumulation and dissemination of malignant plasma cells in the bone marrow. Cell migration is thought to be important for these events. We studied migration in a Transwell two-chamber assay and tested the motogenic effect of various cytokines. In addition to insulin-like growth factor-1 and stromal cell-derived growth factor-1alpha, previously known as ...

متن کامل

Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade.

Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin and CCI-779, have shown preclinical potential as therapy for multiple myeloma. By inhibiting expression of cell cycle proteins, these agents induce G1 arrest. However, by also inhibiting an mTOR-dependent serine phosphorylation of insulin receptor substrate-1 (IRS-1), they may enhance insulin-like growth factor-I (IGF-I) signali...

متن کامل

CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling.

Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood with progression to plasma cell leukemia. Our previous study defined a functional role of CD40 activation in MM cell homing and migration. In this study, we examine signaling events mediating CD40-induced MM cell migration. We show that cross-linking CD4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 18  شماره 

صفحات  -

تاریخ انتشار 2003